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Abstract 
A statistical model for the purpose of logic cell timing analysis in the 

presence of process variations is presented. A new current-based cell 

delay model is utilized, which can accurately compute the output 

waveform for input waveforms of arbitrary shapes subjected to noise. 

The cell parasitic capacitances are pre-characterized by lookup tables 

to improve the accuracy. To capture the effect of process parameter 

variations on the cell behavior, the output voltage waveform of logic 

cells is modeled by a stochastic Markovian process in which the voltage 

value probability distribution at each time instance is computed from 

that of the previous time instance. Next the probability distribution of 

α%Vdd crossing time, i.e., the hitting time of the output voltage 

stochastic process is computed. Experimental results demonstrate the 

high accuracy of our cell delay model compared to Monte-Carlo-based 

SPICE simulations. 

Categories and Subject Descriptors: B.8.2 [Performance 

and Reliability]: Performance Analysis and Design Aids 

General Terms 
Algorithms, Measurement, Performance, Design, Reliability 

Keywords 
Statistical gate timing analysis, Crosstalk noise, Process variations 

1. Introduction 

The downscaling of process technologies to 90nm and below results 
in a significant increase in the device and interconnect 
manufacturing process variations of VLSI circuits. These effects can 
produce excessive timing uncertainty, which in turn requires 
sophisticated timing analysis techniques and tools to reduce the 
uncertainty. As the number of sources of variations increases, 
corner-based static timing analysis (STA) techniques 
computationally become very expensive. Moreover, with decreasing 
size of transistors and interconnect width, the variation of electrical 
characteristics is getting proportionally higher. The process corner 
approach, which used to work well, may thus result in inaccurate 
estimates and suboptimal designs. Statistical static timing analysis 
(SSTA) has been used to address the above-mentioned shortcoming 
of the STA. 

The fact that the interconnect delay may dominate the cell delay in 
modern VLSI circuits has drawn attention toward producing faster 
and more accurate interconnect delay models. However, the 
conventional logic cell delay models have not improved as much. 
They generally use the concept of voltage-based cell delay modeling, 

meaning the cell is pre-characterized with 2-D lookup tables with 
input slew and output load as the keys to the tables and the output 
slew and gate delay as the output of the tables. These look-up tables 
are inherently incompatible with the arbitrary shapes of a noise-
affected input waveform, and hence, fall apart in processing noisy 
inputs.  

Current-based logic cell delay modeling has been introduced as an 
alternative approach to cope with the shortcomings of the 
conventional approaches. Authors in [1] describe a current-based 
model in which a pre-characterized current source is utilized. They 
model the parasitics of the logic cell with a single constant 
capacitance at the output node. The parasitic effects are not modeled 
accurately in [1] e.g., the Miller and input parasitic effects are 
ignored. Keller et al in [2] present the most recent and accurate 
current-based model (referred to as KTV, for Keller, Tseng, and 
Verghese, throughout this paper) in handling noisy waveforms of 
arbitrary shapes. Similar to [1], a pre-characterized current source is 
used. The parasitic components, namely the Miller and the output 
capacitances, are assumed to be constant regardless of the input and 
output voltage values. Based on our observation, these capacitive 
effects can vary significantly depending on cell input and output 
voltages. The assumption of fixed values can give rise to large 
inaccuracy especially for complex cells. Furthermore, this model 
does not address the effect of process variations. On the other hand, 
the existing statistical gate-delay models such as [3] and [4] rely on 
the conventional voltage-based cell delay modeling. This class of 
gate delay modeling approaches cannot handle the noisy input 
waveforms accurately. Therefore, the statistical gate delay analysis is 
restricted to noiseless ramp input.  

The objective of the present work is to devise an accurate statistical 
logic cell delay model to handle noisy inputs in the presence of 
process variations. The existing cell delay analysis techniques either 
do not accurately model the parasitic and non-linear behavior of 
logic cells or do not handle the process variations properly. To 
address the first weakness, a new current-based model in which the 
cell parasitics are pre-characterized as a function of the input and the 
output voltage values is presented. To address the second 
shortcoming, a mathematical method is presented whereby first the 
sensitivities of cell model elements with respect to the sources of 
variation are characterized. The output voltage is then represented by 
a stochastic Markovian process. Finally, using the probability 
distribution of output voltage values at each time instance, the 

distribution of α%Vdd crossing time of the output voltage is 
accurately calculated.  

The remainder of this paper is organized as follows. In section 2 our 
current-based logic cell circuit model is described. Section 3 
describes our statistical approach to consider process variations 
effects. Section 4 and 5 explain the experimental results and 
conclusions respectively. 
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2. Current-based Cell Delay Modeling 

The main motivation for us to create a new model is that the existing 
current-based models sometimes exhibit rather large errors 
compared to SPICE. It is crucial to use a highly accurate circuit 
model for considering the effect of process variations because the 
circuit model error may dominate the error of ignoring process 
variations. In such a case the analysis would not benefit from 
consideration of process variations.  

2.1 The proposed cell delay model 
Our model shown in Figure 1 comprises of two main components, 
namely, 1) parasitic capacitances to model the parasitic behavior at 
input and output nodes and the Miller effect between the nodes, and 
2) a current source at the output node to model the nonlinear 
behavior of the logic cell. Each component is a function of the input 
and output voltages. As a result, the proposed cell model is 
represented by the following KCL equation: 
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I(Vi,Vo) is determined for each logic cell by sweeping the DC values 
of input and output voltages and measuring the current sourced by 
the cell output pin in SPICE. A 2-D lookup table is constructed to 
store I(Vi,Vo) values. In addition, CM(Vi,Vo) and Co(Vi,Vo) values are 
also characterized through a series of SPICE-based transient 
simulations, where saturated ramp input and output voltages are 
applied to the input and/or output nodes and output current is 
monitored. 2-D lookup tables are used to store CM(Vi,Vo) and 
Co(Vi,Vo) values.  
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Figure 1. Our proposed current-based circuit model of a logic cell.  

Precise estimation of the output load is crucial for accurate delay 
calculation of a logic cell. The input parasitic capacitances of fan-out 
cells should be considered as part of the load for delay calculation of 
the driver cell. A transient analysis based on Equation (2) is used to 
determine Ci.  
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Although Ci is in fact a function of the input and output voltage 
values, in practice an input-voltage-dependent Ci is all that can be 
efficiently utilized. This is because when calculating the delay of a 
logic cell, the output voltage values of its fanout cells are unknown. 
Equation (1) can be rewritten by substituting the output current, io, 
as a function of the output load and output voltage. Arbitrary (e.g., 
RLC) loads can be handled by our model; however, without loss of 
generality, we consider a capacitive load, CL from here on to 
simplify the presentation: 

( , ) 0o o o i

L o i o M M

V V V V
C C I V V C C

t t t t

∆ ∆ ∆ ∆
+ + + − =

∆ ∆ ∆ ∆

 
(3) 

Equation (3) can be rewritten w.r.t to output voltage values: 
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3. Proposed Statistical Cell Delay Model 

As stated earlier, it is essential to account for the variations of 
physical parameters in the logic cell model. In this paper we consider 
Lint, VTH0, TOX, and Wint as the physical parameters of interest. The 
logic cell elements (i.e., the current source and capacitive parasitics) 

are represented as a function of physical parameters of the cell to 
capture the process variations. More precisely, a first order (FO) 
model [5] is utilized to express any logic cell element E as a function 
of the physical parameters: 

0 1 1 ... m mE e e X e X= + ⋅∆ + + ⋅∆  (5) 

Here, eo is the nominal value of E whereas ei is the sensitivity 

coefficient of element E with respect to physical parameter Xi. ∆Xi is 
the variation of Xi and m denotes the number of sources of variation. 
We assume that Xi’s have independent Gaussian probability 
distributions. (Parameter distribution independence can be achieved 
by principal component analysis (PCA) [6],[7].) By using the best 
mean squared error fit, ei’s are derived from a series of Monte-Carlo-
based SPICE simulations. These sensitivity values are stored in 2-D 
look-up tables (c.f. Figure 2.)  
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Figure 2. The sensitivity-based look-up tables to model a physical 

parameter variation. 

Equation (4) shows how to compute the output voltage when the cell 
is operating under the nominal condition. By applying random 
variables associated with each cell element, this equation can be 
utilized to express the output voltage waveform distribution in the 
presence of process variations as detailed next. We define Stochastic 
First Order (SFO) modeling form of a signal waveform W(t) as an 
ordered set of N FO expressions fi (i=1…N) where fi gives the 
variational linear form of W(ti) and ti denotes the ith sampling point. 
A SSTA calculator propagates the SFO form of the voltage 
waveforms at the primary inputs throughout the circuit in linear-time 
in the circuit size. The key task is thus how to propagate the SFO at 
the input of a logic gate, {fk}, to its output node (adopting the single 
input change model), thus calculating the SFO of the output voltage 
waveform, {gk}. To do this, we utilize Equation (4) as follows:  
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where hk+1 denotes the FO form of current source of Figure 1 as 
looked up by the nominal values of fk+1 and gk. Notice that Co and 
CM are in the FO forms. In addition, CL has been cast into the FO 
form. The right hand side of Equation (6) exploits the fact that the 
division, multiplication and summation of FO expressions can be 
performed and the result cast into a FO form. For example, this may 
be approximately done by linearization with respect to Xi’s based on 
Taylor series expansion. 

Equation (4) can be used recursively, meaning that the output 
voltage at each time instance can be written as a linear function of 
the sources of variation. Therefore, Vo(ti) which is the summation of 
the normal distributions of process parameters is modeled by a 
normal distribution. The fact that the distribution of the output 
voltage at each time instance can be computed from that at the 
previous time instance leads us to the concept of a stochastic 
Markovian process [8] as explained next. 

Definition 1: A stochastic process x(t) is called a Markovian process 
if the following is satisfied for every n and t1<t2<…<tn: 
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Vo(t) is a Markovian stochastic process. We use this property to 

compute the distribution of any α%Vdd crossing time of Vo(t). 

3.1 Computing the delay distribution 

As stated earlier, the current-based cell model enables one to 
compute the output voltage distribution at each time instance. 
However, the problem of interest is to compute the distribution of 

the delay or in general the distribution of any α%Vdd crossing time 
of the output voltage. For simplicity we normalize Vo with respect to 
Vdd. The problem can be stated as follows. 

Problem Statement: Given the stochastic Markovian process Vo(ti), 
calculate the hitting time probability (defined as follows:)  

P(Tα ≤ tn) where Tα=inf {ti : Vo(ti)=α} (8) 

By definition Tα is the first time that process Vo reaches the value of 

α.. The hitting time probability in Equation (8) is used to 

characterize the distribution of any α% crossing time of the output 
voltage. By finding the hitting probability, we compute the cell delay 
distribution in the presence of the process variations.  

Lemma 1: For a Markovian process X(ti),  
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This lemma follows from the Markovian process property.  

Theorem 1: The hitting time probability for the Markovian process 
Vo(ti) is computed as follows: 
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(9) 

Proof: P(Tα ≤ tn) = 1- P(Tα > tn). Without loss of generality, we 
assume that the output voltage is making a low to high signal 

transition. Therefore, the event (Tα > tn)) is equivalent to the joint 

event (V(t1) < α ∧V(t2) < α ∧…∧ V(tn) < α), which simply states that 

all Vo values up to tn are below α: 
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Using the conditional probability and for P(V(ti-1) < α) > 0: 
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Substituting equation (11) in Equation   produces the desired result 
and concludes the proof. � 

Equation (9) enables us to calculate the distribution of any α% 
crossing time of the output voltage. The remainder of this section 
focuses on the calculation of probability in Equation (11). The term 

P(V(ti)<α) for 1 ≤ i ≤ n can be directly calculated from the 
probability distribution of the voltage at each time instance. 

Definition 2: The bivariate normal distribution is given by: 
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The distribution of the Vo(ti) and Vo(ti-1) are correlated normal 
distributions (because each is a weighted linear summation of the 
normal distributions associated with the process.) In order to 
calculate the joint probability of Vo(ti) and Vo(ti-1) from Equation 
(12), the following lemma is applied to find their covariance.  

Lemma 2: Suppose that the distribution of the voltage values at 
times ti and ti-1 is given in first-order form as follows: 
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where m is the number of sources of variation. ∆Xi’s are normalized 
to N(0,1) by appropriate coefficient scaling. The covariance of Vo(ti) 
and Vo(ti-1) can be calculated as follows: 
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Equation (9) along with definition 2 and lemma 2 provide complete 

information for computing the probability distribution of any α% 
crossing time of the output voltage. 

It is possible to encounter multiple α% crossing times. The 

procedure explained above can be used to iteratively find all α% 

crossing times. More precisely, after the first α% crossing, a new 
Markovian process is considered that starts from this hitting time. 
Assuming low to high transition for the output voltage, the 
waveform reaches the second hitting time from a higher voltage than 

α. The event (Tα > tn) is thus equivalent to the event (V(t1) > α ∧ 

V(t2) > α ∧…∧ V(tn) > α). Equation (9) can be easily modified to 
calculate the distribution of the second hitting time for the new 
process, and so on.  

It can be shown that, for known and small number of sources of 

variation, the algorithm complexity is O(n×k2) where the pdf of the 
output voltage at each time instance is discretized with k sample 
points. 

4. Experimental Results 

To evaluate the proposed current-based modeling approach, it was 
compared with Hspice [9]. The set of experiments involved various 
logic cells, including simple inverter and NAND gates, as well as 
complex cells such as AOI (And-Or-Invert).  

Figure 3 shows comparison with Hspice for some examples of 
crosstalk-induced noisy waveforms given to a minimum size inverter 
in 130nm cell library. The equivalent output waveforms generated 
by our model match the Hspice results closely.  

Next comparison with the KTV model [2] is presented. Figure 4 
illustrates the absolute delay errors w.r.t. to Hspice for a minimum 
size inverter in our 130nm cell library. The input line to the inverter 
is coupled by a 50fF capacitance and is under attack by an aggressor 
line. Both the victim and aggressor are driven by minimum size 
inverters. The cell under consideration has a FO4 load. The signal 
arrival time of the input of the victim line driver is set to 10ps while 
that of the aggressor (i.e., the noise injection time) is swept from 



 

100ps to 200ps with a time step of 1ps. Compared to KTV, the 
accuracy of delay calculation for the minimum size inverter is 
improved by 8.8% (17.3%) on average (max), respectively. Figure 5 
shows the absolute delay error trend for a similar experiment 
performed on AOI22 cell with size 10x. The coupling value is 80fF. 
The accuracy improvement in this case is 52.1% (93.4%) on average 
(max.) 
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Figure 3. The actual and equivalent waveforms by our model for some 

crosstalk-induced noisy waveforms. 
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Figure 4. Absolute errors in calculated delay for a min size inverter  
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Figure 5. Absolute errors in calculated delay for an AOI22 size 10x.  

As discussed earlier, the shape of the waveform greatly impacts the 
delay calculation, therefore, delay and output slew metrics may not 
be sufficient to model the waveform shape. Our current-based model 
is capable of producing output waveforms whose shapes are very 
close to those produced by Hspice. Mean square error (MSE) is a 
good metric to compare waveform shapes. Figure 6 shows MSE for 
our cell model and KTV compared to Hspice. It is seen that this 
value is lower for our model compared to KTV in most of the cases. 
In fact, the average MSE improvement for the inverter (AOI22) for 
the aforementioned experiment setup is 11.3% (24.5%.) 

Next, we evaluate our statistical analysis methodology in handling the 
effect of the process variations on cell output waveform and, more 
specifically, the cell delay. We performed extensive Hspice based 
Monte-Carlo simulations to calculate the 50% cell delay distribution 
over our test-cases, namely, the minimum size inverter as well as the 
AOI22 cell with the same experimental setup explained before. We 

assumed 3σ variation of 15% for the sources of variation [10]. We also 

calculated the delay distribution using the mathematical approach 
presented in section 3. For each arrival time of the aggressor (noise 
injection time) we compared the mean and the variance of the 50% 
delay computed by our proposed mathematical approach and that of 
Monte-Carlo simulation. The average and maximum error results over 
all noise injection times are reported in Table 1. 
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Figure 6. Waveform similarity (mean square error) comparison to 

Hspice for our model and the KTV model. 

Table 1: Average and maximum percentage error by our mathematical 

method and Monte-Carlo. 

 

Mean Variance Error % 

Avg error Max error Avg error Max error 

Inverter 1.1% 3.9% 1.5% 4.4% 

AOI22 1.4% 4.5% 1.7% 4.9% 

5. Conclusions 

A statistical logic cell delay model for the purpose of cell timing 
analysis was presented. A new current-based cell delay model was 
developed to accurately capture various cell parasitic and nonlinear 
effects in the computation of output voltage waveform in the 
presence of crosstalk-induced noise. A novel statistical analysis 
methodology was also presented to capture the effect of process 
variations on the cell output waveform. The cell output voltage 
waveform was modeled by a Markovian stochastic process. 

Consequently the distribution of cell timing parameters such as α% 
crossing time was computed. Experimental results showed the high 
accuracy of our cell delay model compared to the existing cell delay 
models. Comparison with Monte-Carlo-based SPICE simulations 
shows the high accuracy of the presented mathematical approach in 
dealing with process variations.  
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